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Abstract

This chapter reviews major theories of cognitive aging. Theories such as the
sensory deficit hypothesis, speed of processing, and inhibitory deficit hypothesis
are based largely on behavioral findings and focus on a single process that is
purported to account for a number of cognitive changes with age. Specific to
memory, theories focus on age deficits in recollection and binding. Over the past
twenty-five years, brain-based models have begun to pervade the literature. These
have focused on concepts such as compensation, dedifferentiation, and suppres-
sion of the default mode network. The scaffolding theory of aging and cognition
integrates many of these concepts into a single comprehensive model, including
consideration of enrichment and depletion factors that operate over the life span.
We conclude the chapter with some debates, critiques, and consideration of future
directions, particularly considering the contributions of cognitive neuroscience
methods.

Behavioral Models of Aging

In this section, we reviewmodels considering what cognitive abilities may
be impaired with age, based largely on behavioral data. Each of these models
primarily focuses on one ability, suggesting that losses in this ability can account
for more widespread changes to memory or other cognitive abilities with age.

Sensory Deficit Hypothesis

The sensory deficit hypothesis proposes that cognitive changes associated with
aging may be attributed to changes in sensation (i.e., deficits in vision and
hearing). Specifically, processing of visual and auditory information is based
on abilities that deteriorate with age (e.g., Stine, Wingfield, & Poon, 1989;
Chapter 10). Numerous studies have found that the correlation between sensory
function and cognitive performance is stronger in old age than during earlier
periods of adulthood (Anstey, Lord, & Williams, 1997; Anstey, Luszcz, &
Sanchez, 2001; Anstey, Stankov, & Lord, 1993; Baltes & Lindenberger, 1997;
Lindenberger and Baltes, 1994; Lindenberger & Ghisletta, 2009). For example,
Baltes and Lindenberger (1997) found that the average proportion of individual
differences in perceptual speed, reasoning, knowledge, fluency, and, importantly,
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memory were strongly related to visual and auditory acuity in old age (age range
70–103). Baltes and Lindenberger argued that the strong relationship between
sensory and cognitive domains might be the result of a third common factor, or
ensemble of factors. This common cause explanation suggests that the associa-
tion between sensory and cognitive function occurs because “both sets of
measures are an expression of the physiological architecture of the aging
brain” (Baltes & Lindenberger, 1997, p. 13).
An alternative interpretation is that sensory and perceptual tasks place an addi-

tional cognitive load on older adults. The result would be a reduction in the
available cognitive resources. This is known as the cognitive permeation hypoth-
esis (Li et al., 2001; Lindenberger & Ghisletta, 2009; Lindenberger, Marsiske, &
Baltes, 2000; Rabbitt, 1968; Rabbitt, 1991). There are very few studies that have
empirically evaluated the notion that sensory decline results in reduced processing
resources. However, research does suggest an aging-induced permeation of sensor-
imotor functioning (the combined functions of sensory and motor activities) with
cognition (Lindenberger et al., 2000).
Although the theory originated with a focus on deficits in sensory systems

underlying cognitive deficits with aging, the common cause model has transformed
somewhat over time. Associations between sensory and cognitive functions may
not be as strong as were initially reported, based on cross-sectional data (Anstey,
Hofer, & Luszcz, 2003; Lindenberger & Ghisletta, 2009). However, the apprecia-
tion that a small number of factors account for cognitive changes with age (see the
section “Domain-General versus Domain-Specific Age-Related Changes” about
domain-general effects) and that there is a loss of specialization in sensorimotor
systems (see the section “Dedifferentiation”) is in line with the idea of a “common
cause” of aging.

Speed of Processing

The speed of processing model (cf. Salthouse, 1991b, 1996) argues that cognitive
operations are limited by general processing constraints and variations in the
efficiency or effectiveness of completion of specific processes. In other words,
the theory assumes that the ability to process information from the environment
becomes less efficient as we age. Therefore, with increasing age, capacity and
mental energy, or cognitive resources, required to perform information-processing
routines becomes more limited. It is assumed that general limitations frequently
impose constraints on many types of processing (e.g., encoding) and hence, they
have consequences for the performance of a large variety of cognitive tasks.
A reduction with increased age in the speed with which many cognitive operations
can be executed is hypothesized to be a major contributor to the adult age differ-
ences in many measures of cognition (e.g., digit symbol substitution; visual
matching; measures of working and long-term memory) (Salthouse, 1979, 1985a,
1985b, 1991a, 1996; Salthouse, Babcock, & Shaw, 1991; Salthouse et al., 1990;
Salthouse & Mitchell, 1990).
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According to this model, there are two factors that contribute to overall proces-
sing speed effects on cognitive processes: limited time and simultaneity (Salthouse,
1996). In the context of the limited time mechanism older adults execute relevant
cognitive operations too slowly for successful completion. This limited time
mechanism suggests that the processing of information occurs in discrete steps,
and response latencies represent the sum of the duration of the individual steps.
According to the processing speed theory, as we age, we may spend more time
executing early operations associated with a particular cognitive task, restricting
the time available for later processing.
The key assumption in the simultaneity mechanism is that a slower speed of

processing results in less information available for simultaneous processing. The
concept of working memory is another way of referring to the amount of simulta-
neously active information, and there are many reports of age-related declines in
measures of working memory (Gazzaley et al., 2007; Hasher & Zacks, 1988; Park
& Payer, 2006). When the rate of executing operations is slow, the relevant
information is less likely to be useful because it may be impoverished by the
time preceding operations are completed (Salthouse, 1996).

Inhibitory Deficit Hypothesis

A third theoretical model for cognitive aging is the inhibitory deficit hypothesis. In
addition to processing speed, research suggests that older adults may manifest
inhibitory deficits in working memory. Hasher and Zacks (1988) proposed the
inhibitory deficit framework, which suggests that an efficient (fast and accurate)
mental life requires the ability to limit activation to information most relevant to
one’s goals. Three functions of inhibition were proposed: controlling access to
attention’s focus, deleting irrelevant information from attention and working
memory, and suppressing or restraining strong but inappropriate responses. The
inhibitory deficit hypothesis has generally been supported by findings from
a variety of experimental paradigms, including negative priming (Kane et al.,
1994; Tipper, 1991), text processing (Hamm & Hasher, 1992), and speech produc-
tion (Arbuckle & Gold, 1993).
Hasher and Zacks (1988) and Hasher and Campbell in this handbook (Chapter 8)

presented compelling evidence demonstrating that older adults were more likely to
maintain disconfirmed antecedent information that they heard earlier than younger
adults, and that this irrelevant information affected subsequent cognitive perfor-
mance. Additional inhibitory deficit evidence comes from working memory capa-
city experiments with older adults. For example, in a standard working memory
capacity experiment, participants are presented with lists in increasing order of
length, from shortest to longest (e.g., Daneman & Carpenter, 1980) or in a random
order (e.g., Engle, Cantor, & Carullo, 1992), setting the stage for recall of the
longest lists to be vulnerable to disruption from any nonsuppressed materials from
earlier lists. When the longest sets are given first to younger and older adults, age
differences in span are reduced and can even be eliminated (see Lustig, May, &
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Hasher, 2001; May, Hasher, & Kane, 1999; Rowe, Hasher, & Turcotte, 2008).
According to Lustig, Hasher, and Zacks (2007) the typical age differences observed
on working memory span tasks seem to be the product of a reduced ability to delete
or suppress no longer relevant materials, rather than of age differences in proces-
sing resources (see also Bunting, 2006; Friedman & Miyake, 2004; Hedden &
Park, 2003).

Recollection Deficits

So far, the discussed theoretical models propose age-related changes in general
processing that cut across a number of cognitive domains, and generally impact
cognitive functioning. Each theoretical model has garnered much support, yet some
age-related changes in cognition may not be yoked to a single core deficit that
affects all aspects of cognition. In this section, we discuss specific changes in
episodic memory that are associated with normal aging.
Episodic memories are those that not only include the “what,” but also the

“when” and “where” of our daily lives. They are memories that once initially
learned, or encoded, are dropped from consciousness, and consolidated into long-
term memory. Remembering occurs when the memory returns to consciousness.
Episodic memory can be thought to include two types of information: (1) memory
for items previously encountered, and (2) memory for the context in which those
items were encountered. Further, if we adopt a dual-process model of episodic
memory retrieval we assume that retrieval of episodic events (including items and/
or contexts) can be based on processes of familiarity and recollection (see also
Chapter 11). Conscious recollection of the context and other details associated with
prior experience can be an important influence in attributing information to its
specific prior experience. However, frequently retrieved events are attributed to
prior experience, not because of a conscious recollective experience, but rather,
because those events accompany some feeling of familiarity (Jacoby, Kelley, &
Dywan, 1989b; Light, 2012; Reinitz et al., 2012; Rhodes, Castel, & Jacoby, 2008;
Wong, Cramer, & Gallo, 2012). Familiarity and recollection can be thought of as
two independent mechanisms that influence remembering. Whereas recollection is
a cognitively effortful conscious process, familiarity has been described as a faster,
more automatic basis for responding (Atkinson& Juola, 1974; Hintzman&Curran,
1994; Jacoby, Yonelinas, & Jennings, 1997; McElree, Dolan, & Jacoby, 1999;
Yonelinas & Jacoby, 1996a, 1996b, 2012).
In the context of this dual-process model, recollection seems to experience age-

related declines, whereas familiarity remains relatively constant across the life
span. For example, in one study Jacoby (1999) demonstrated that older adults were
more likely to use familiarity to make memory decisions, as opposed to conscious
recollective processes. In these experiments, younger (e. g., college undergradu-
ates) and older participants (aged 60–94) were presented with a list of words to
read. Words were presented one, two, or three times. Following this, participants
were presented with a list of words aurally and told these words were to be
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remembered for an upcoming memory test. There was no overlap between read and
heard words. For the test, participants were instructed to indicate that a word had
previously been presented if the word was presented in the second heard list. Older
adults were more likely to falsely claim repeatedly presented read words were
heard as compared to younger adults. In fact, younger adults were more likely to
correctly reject read words as the number of repetitions increased. When younger
adults were forced to respond under a very short deadline that prevented the
recollective process, they demonstrated the same familiarity-dependent pattern of
errors as older adults. Jacoby argued that younger adults weremore likely to engage
in conscious recollective processes as compared to older adults.
Jacoby (1991) argued that conscious recollective processes at retrieval could be

employed only in situations in which it was facilitated by prior processing. For
example, in situations of divided attention at encoding, individuals may not have
the capability of engaging in recollective processes at retrieval. One might argue
that older adults would then likely be at a disadvantage if domain-general theore-
tical models of cognitive aging are considered in the context of this domain-specific
proposal. That is, older adults may engage in less effortful or shallower processes at
encoding, because of limits in processing speed and/or because of problems
inhibiting irrelevant thoughts. However, even when older and younger adults
were equated on original learning, they were less likely to engage in conscious
recollective experiences as compared to younger adults (Jacoby et al., 2005; see
Daselaar et al., 2006, for a parallel finding in the neuroimaging literature revealing
that age impairs recollection-related hippocampal recruitment, while showing
heightened familiarity-related recruitment in cortical medial temporal lobe
[MTL] regions).

Binding Deficits

Research suggests that one reason older adults may demonstrate a deficit in
recollection is because they have not sufficiently bound the elements of an event
into an integrated episode, or memory. Episodic retrieval can involve access to
individual items or details of a memory, the retrieval of the context in which the
item(s) were presented, or a combination of both. Memory errors may occur
because such individual pieces of a memory are not sufficiently integrated at
encoding (Dodson, Holland, & Shimamura, 1998; Gruppuso, Lindsay, & Kelley,
1997; Jacoby et al., 1989a; Kelley & Sahakyan, 2003). Memory errors can also
occur when source information, or contextual details, is similar across episodes
(Hashtroudi, Johnson, & Chrosniak, 1989; Lindsay, Johnson, & Kwon, 1991;
Mitchell & Zaragoza, 2001; Thomas & Bulevich, 2006; Thomas, Bulevich, &
Loftus, 2003), such that retrieval results in the incorrect source or details being
retrieved alongside an item which was not originally paired together at encoding.
There is considerable evidence to support the conclusion that older, compared to

younger, adults demonstrate more severe source-monitoring deficits (Chalfonte &
Johnson, 1996; Glisky, Rubin, & Davidson, 2001; Mitchell et al., 2000; Naveh-
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Benjamin, 2000; Naveh-Benjamin, Brav, & Levy, 2007; O’Hanlon, Wilcox, &
Kemper, 2001; Thomas & Bulevich, 2006). For example, researchers have demon-
strated that older adults are less likely to remember various contextual features,
such as color or print style of materials (Kausler & Puckett, 1981b; Light et al.,
1992; McIntyre & Craik, 1987), the gender of a speaker (Ferguson, Hashtroudi, &
Johnson, 1992; Kausler & Puckett, 1981a), the location of targets (Light &
Zelinski, 1983; Park, Puglisi, & Sovacool, 1983; Pezdek, 1983), the context in
which a word was previously presented (Hashtroudi et al., 1989; Mitchell, Hunt, &
Schmitt, 1986), or whether a test item came from a videotape or from photographs
(Schacter et al., 1997).
This age-related deficit in associative memory has also been shown to be greater

than the age-related deficit demonstrated for itemmemory (for review see Kaszniak
& Newman, 2000; Old & Naveh-Benjamin, 2008; Spencer & Raz, 1995).
Typically, in these studies researchers present older and younger participants
with item-item or item-context pairs at study. At test, item memory and associative
memory are assessed using a recognition test including both intact and recombined
pairs (targets and lures, respectively). Recombined pairs consist of items originally
presented during the initial study, but not part of the same trial. Using this para-
digm, researchers have demonstrated that older adults store individual items
similarly to younger adults, as measured by performance on an item memory
recognition test; however, they demonstrated a deficit in memory for associative
information, with memory errors arising in association with the endorsement of
lures as targets. This had led researchers to suggest that the binding deficit demon-
strated by an associative recognition test may be due to the engagement of simple,
less effortful retrieval processes, specifically that of recollection opposed to famil-
iarity processes.

Deficits in Self-Initiated Processes

A broad examination of findings used to support both domain-specific and domain-
general theories of cognitive aging suggests that older adults may present deficits in
both encoding and retrieval. Take, for example, the speed of processing account.
According to this proposal, age-related deficits in memory arise because relevant
cognitive operations are executed too slowly to be successfully completed. Shallow
processing or limitations in encoding also may be linked to domain-specific
accounts for age-related deficits in memory. First, older adults have difficulties
initiating effective encoding “strategies” that could promote memory for the
associative details of an experience. Craik and Byrd (1982) suggested that older
adults may be deficient in the ability to engage in what they called “self-initiated
processing.”According to this view, these deficits reduce the kinds of self-initiated
activities that are required for efficient task completion at encoding. Thus, older
adults may have more difficulty in generating elaborate and distinctive memory
traces (encoding deficit). In addition, if older adults do not devote significant
cognitive resources to search at retrieval, even an elaborate memory trace will
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fail to be retrieved. If effective processes are not engaged at either encoding or
retrieval, memory accuracy will likely be impaired. More recently, DeCaro and
Thomas (2019) demonstrated that the deficits in self-initiated processing or strate-
gic regulation of learning and remembering may be task dependent. Older partici-
pants were as successful in the restudy decisions as younger adults when the
decision to restudy was made immediately after a retrieval attempt as opposed to
when the decision was delayed. Oft-found age-related differences in restudy
decisions have been within the context of blocked designs where the restudy choice
block follows an evaluation and retrieval attempt block. These findings are impor-
tant because they suggest that age-related differences in self-initiated processes or
in strategic regulation should be considered in the context of how experiments have
been designed to address these issues.
Important to the discussion of strategy use in aging, neuroimaging studies show

that providing older adults with a memory strategy can improve performance
through the modulation of neural processing during both encoding (Berry et al.,
2010; Kirchhoff et al., 2012; Nyberg et al., 2003) and retrieval (Belleville et al.,
2011; Hampstead et al., 2012; Kirchhoff et al., 2012). For example, Kirchhoff and
colleagues (2012) found that providing older adults with a semantic encoding
strategy lead to both improved memory and increased recollection-related activity
in the bilateral hippocampus and bilateral middle and inferior prefrontal cortex
during retrieval. Further, activity within the prefrontal and left lateral cortex was
also associated with self-initiated semantic strategy use during encoding. Results
suggest that some of the age-related neural deficits observed in memory tasks (see
Chapter 11) may be due to older adults’ failure to engage the same strategies
employed by their younger counterparts.

Brain-Based Models of Aging

One of the notable advances in research on cognitive aging over the past
couple of decades has been efforts to characterize and interpret age differences in
neural activation. While conventional thinking might assume that age-related
decline in cognitive functioning would simply be associated with decreases in
neural recruitment associated with a given cognitive task, the story is much more
complicated. Decades of research has shown that neural activity associated with
cognitive aging is characterized by decreases as well as increases in activation.
Early work in this area focused largely around the idea of neurocognitive decline,
dedifferentiation, and compensation. Several models have been proposed to
account for the different patterns of activation that are typically observed across
aging studies. Within these models researchers have included several factors,
including (but not limited to) the link between neural activation and behavior,
task difficulty, and individual differences as characterized by such theoretical
concepts as reserve and maintenance. Below we highlight a few of these models,
while focusing on their usefulness with respect to interpretation of data.
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Compensation

Early work in neurocognitive aging characterized age differences in activation with
respect to two fairly consistent patterns of age-related differences in brain activity,
HAROLD and PASA. The HAROLD, or Hemispheric Asymmetry in OLDer
adults, pattern was originally described by Cabeza and colleagues (1997) to
account for the fact that older adults tended to exhibit greater bilaterality in their
neural recruitment compared to what was found in younger adults. Cabeza and
colleagues further suggested that, as this pattern typically was associated with
successful cognitive outcomes in older adults (e.g., subsequent memory success,
accurate perception, accuracy in working memory), such bilateral recruitment was
related to the concept of compensation. A similar interpretation was associated
with the observation of the PASA (posterior to anterior shift in aging) pattern
(Dennis & Cabeza, 2008). This pattern was first observed by Grady and colleagues
(1994), who suggested that older adults compensate for deficits in visual processing
with higher-order processing undertaken by the prefrontal cortices (PFC). Since
then studies spanning perception, attention, working memory, and episodic mem-
ory have also reported age-related increases in more anterior brain regions (mainly
PFC) coupled with decreases in posterior regions (mainly occipital cortex), when
compared to the distribution of activity seen in younger adults.
While most subsequent studies supported a compensation account to these

patterns (for a review see Dennis & Cabeza, 2008), it is critical to understand
that vital to such an interpretation of age-related differences in neural activity is the
relationship between the increased activation and cognitive performance. This
fundamental aspect of understanding age differences in neural activation was
outlined by Cabeza (2002) and furthered by Reuter-Lorenz and Cappell (2008)
with their compensation-related utilization of neural circuits hypothesis
(CRUNCH). Specifically, CRUNCH outlines situations in which age-related over-
activation is compensatory and integrates in the concept of strategies differences
underlying age-related differences in patterns of neural activity. CRUNCH asserts
that a compensation hypothesis requires that performance be matched across age
groups or that overactivation in older adults is correlated with higher performance
(for an expanded view regarding compensation see Cabeza and Dennis, 2012).
With regard to HAROLD, the compensatory account is supported by studies that
showed positive correlations between bilateral activation and cognitive perfor-
mance (e.g., workingmemory; Reuter-Lorenz et al., 2000) as well as those showing
bilateral recruitment only in older adults whose task-related performance is
matched to young adults, rather than those showing behavioral deficits (Cabeza,
2002; Rosen et al., 2002). Similarly, PASA has been associated with equivalent
cognitive performance across age groups (e.g., perception; Grady et al., 1994) as
well as positive correlation with cognitive performance (e.g., perception and
episodic memory; Davis et al., 2008).
Fundamental to the notion of compensation is that such overaction occurs in

response to issues of task difficulty. Also fundamental to compensation is the idea
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that overaction is undertaken due to a fundamental need of the network/system in
older adults to work harder at a task, compared to younger adults, in order to
accomplish task-related objectives (e.g., cognitive processes). Of course, these
concepts are related and not unique to aging. The need for compensation has
been suggested to be related to both the structural and functional integrity of neural
networks in aging as well as the need to meet demands of task difficulty (see
Reuter-Lorenz & Cappell, 2008, for a discussion). More recently the relationship
between cognitive architecture and resources and neural compensation in aging
was reviewed by several cognitive aging researchers with the intent of further
defining the concept of compensation (Cabeza et al., 2018). They further endorse
the view that compensation be used to describe increased neural recruitment that is
linked to cognitive performance measures and upregulated in response to increases
in cognitive demand. Ideally, this cognition-enhancing recruitment will support
performance, allowing older adults to meet task demands. However, more often
such increases in neural activation may fall short and be insufficient to overcome
limitations of the aging brain (see a discussion of STAC in the section “ Scaffolding
Theory of Aging and Cognition”). This relationship has been described by an
inverted U function with respect to task demands and overall neural recruitment
(see Cappell, Gmeindl, & Reuter-Lorenz, 2010; Reuter-Lorenz and Cappell, 2008).

Dedifferentiation

An alternative explanation to overactivation in older adults is that of dedifferentia-
tion, whereby more widespread activation is considered to reflect an age-related
impairment in the recruitment of specialized neural mechanisms (Li &
Lindenberger, 1999). Dedifferentiation thus has links to the common cause
model discussed in the section “Sensory Deficit Hypothesis” and that of age-
related increases in correlations across tasks (e.g., Lindenberger and Baltes,
1994).With respect to the relationship between compensation and dedifferentiation
at the neural level, the latter is often associated with the lack of behavioral markers
to account for the increased activation as well as findings that the same brain
regions are active across different tasks.
One of the earliest demonstrations of age-related changes in line with dediffer-

entiation is that visual regions responsible for processing specific classes of stimuli
in younger adults respond less selectively in older adults (Park et al., 2004). For
example, in younger adults, certain neural regions responded highly selectively to
viewing faces or places, but those same regions in older adults responded to
multiple classes of stimuli (e.g., faces and places). These fMRI data were reana-
lyzed with multivoxel pattern analysis (MVPA), a technique that allows for com-
parison of the pattern of neural activity across space rather than simply comparing
the magnitude of activation in a spatially contiguous region as done with univariate
approaches. These results revealed that older adults’ less selective neural activity
emerged not only in ventral visual regions but also in the early visual cortex,
suggesting widespread dedifferentiation in the neural response with age (Carp
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et al., 2011). Dedifferentiation appears to result from both a loss of tuning with age,
such that neurons respond less selectively in older adults (e.g., a neuron responds to
both faces and scenes), and greater attenuation in neural responses with age, such
that the neural response to the preferred stimulus is weakened (e.g., a face-selective
neuron has a reduced response to faces) (Park et al., 2012).
Although dedifferentiation has been replicated numerous times in visual regions

(e.g., Bowman, Chamberlain, & Dennis, 2019; Burianová et al., 2013; Park et al.,
2012), dedifferentiation has also been observed across memory-related regions
(e.g., striatum/MTL; Dennis & Cabeza, 2011) and the motor system (Carp et al.,
2011). One important outcome of dedifferentiation is that the less selective neural
regions may be able to respond more broadly to support age-related compensation
(e.g., Dennis & Cabeza, 2011). Dedifferentiation can also contribute to findings of
domain-general cognitive changes with age; as regions respond in more homo-
geneous ways across multiple tasks, this generality of response can contribute to
a factor extending across specific domains (see discussion of domain-general vs.
domain-specific changes with age in the section “Domain-General versus Domain-
Specific Age-Related Changes”).

Failure to Suppress the Default Mode Network

Aging appears to impact the default mode network differently than other
networks of the brain. This cortical midline network, consisting of medial
prefrontal and parietal cortical regions, tends to be deactivated during tasks
that demand external attention (e.g., judging the properties of a word) but
activated during internal reflection (e.g., thinking about oneself; mind-
wandering). In the first study of the effects of aging on this network
(Lustig et al., 2003), participants completed a semantic classification task
in which they made making living/nonliving judgments about the concepts
represented by words. Whereas younger adults deactivated this network, or
activated it less than baseline, older adults did not do so to the same extent.
Moreover, older adults with Alzheimer’s disease activated some regions of
the default network when they should be deactivated. These patterns are
shown in Figure 1.1. Most cognitive processes require external attention,
making these changes in ability to suppress the default mode network during
such tasks potentially a widespread challenge with aging. Subsequent
research extended the finding of reduced deactivation of the default mode
with age, coupled with increased engagement of the task-positive network
(i.e., those regions activated for externally focused, cognitively demanding
tasks), across a number of different tasks (Grady et al., 2010). In addition,
age differences in suppression of the default mode might be most apparent
for cognitively demanding tasks but not emerge at low levels of task
demand (Persson et al., 2007). This suggests that older adults may have
difficulty modulating the default mode network in response to task demands.
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One theory focuses on age-related changes to the default mode network,
considered alongside changes in the executive network. The default-executive
coupling hypothesis of aging (DECHA) (Spreng & Turner, in press; Turner &
Spreng, 2015) proposes that aging impacts the coupling of the default mode
network and the lateral prefrontal brain regions that contribute to cognitive
control. The difficulty modulating prefrontal control regions may lead older
adults to rely more on semantic processing with age. This shift reflects not only
the impairment to frontal control processes, but also the relative preservation with
age of semantic-based crystallized abilities (Horn & Cattell, 1967), such as
knowledge of facts, schemas, and scripts. As functional networks can flexibly
couple together, DECHA emphasizes the context dependency of this age-related
change in the coordination of networks. Factors such as the availability of
cognitive control resources and the goal relevance of task-congruent knowledge
can determine whether the default and executive networks activate together for
older adults.
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Figure 1.1 Functional deactivations: Change with age and dementia of the
Alzheimer type. For the color version, please refer to the plate section.
The engagement of default mode regions in younger adults (YNG), older adults
(OLD), and in older adults with dementia of the Alzheimer’s type (DAT) during
word judgments, and an externally focused task. For both the medial prefrontal
cortex (top row) and the medial parietal/posterior cingulate cortex (bottom
row), older adults do not suppress the regions as much as younger adults. Older
adults with Alzheimer’s disease show exaggerated failure to suppress in the
posterior region. Figure adapted from Lustig et al. (2003). Copyright (2003)
National Academy of Sciences, USA.
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Scaffolding Theory of Aging and Cognition

The scaffolding theory of aging and cognition (STAC; Park & Reuter-
Lorenz, 2009) adopts a broader approach to understanding cognitive aging. This
conceptual model integrates the types of behavioral theories described in the
section “Behavioral Models of Aging” that identify age differences in sensory
processing, speed of processing, inhibition, recollective memory, memory binding,
and self-initiated processes alongside the neural frameworks described in the
section “Brain-Based Models of Aging” through models such as HAROLD,
PASA, and CRUNCH. By combining these disparate findings, STAC incorporates
factors associated with cognitive decline and those that affect compensation. The
model highlights the ways in which the brain responds to challenges by function-
ally reorganizing and repairing itself in a continuous fashion to support cognition
with age. The way in which these functional changes emerge could be seen as in
line with the idea of environmental support (section “Self-Initiated Processes and
Environmental Support”), as the brain generates a type of support for cognitive
performance when original approaches fail.
The STACmodel incorporates behavioral and neural findings from a rich history

of research. As shown Figure 1.2, age-related changes in the brain such as cortical
thinning (Chapter 3), white matter changes (Chapter 3), loss of dopamine (Chapter
5), failures to suppress the default mode during tasks that demand external attention
(section “Failure to Suppress the Default Mode Network”), and reduced engage-
ment of the medial temporal lobes (Chapter 11) present neural challenges that can
lead to functional deterioration that would impact cognitive functioning. However,
compensatory scaffolding through processes depicted in Figure 1.1 such as
increased bilaterality (Cabeza, 2002; Reuter-Lorenz et al., 2000) or recruitment
of frontal regions (Davis et al., 2008; Grady et al., 1995; Gutchess et al., 2005)
could alter the trajectory of aging, potentially mitigating or reducing the extent of
age-related impairments. Through these examples, one can see that the prefrontal
cortex is often a site for scaffolding. Despite sometimes pervasive age-related
changes in this region of the brain (e.g., Chapter 11), this region is one of the
most flexible, responsible for implementing strategies (Chapter 7) and responding
to difficulty and conflict. STAC accounts for how cognitive performance can be
relatively preserved despite the extent of neural changes that occur with age.
Engaging compensatory scaffolding by recruiting new neural pathways or path-
ways originally used during earlier development or new learning is a normal
response to the challenges associated with aging, as it makes up for neural circuitry
that has become inefficient. In this way, the STAC framework differs somewhat
from the concept of cognitive reserve (Chapter 2); the cognitive reserve framework
emphasizes the response of the brain in late life when under challenge whereas
STAC considers these processes to be a normal process occurring across the life
span.
Since original publication of the STAC model in 2009, strong evidence for life-

span compensatory processes emerged in the literature, particularly from
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longitudinal studies. The revised STAC model (STAC-r; Reuter-Lorenz & Park,
2014) introduces into the model even more factors that influence developmental
trajectories, with a particular emphasis on the types of experiences that accumulate
across the entire life span, from birth to death. The resulting framework provides
a way to think about how the dynamic changes to the brain with age reflect the
response to both challenges and compensatory processes. These life-span “neural
resource enrichment” factors include those experiences that shape cognition in
positive ways, such as education (Chapter 2), multilingualism (Chapter 26), and
higher ability at early life stages (Chapter 24; Deary, Pattie, & Starr, 2013; Gow
et al., 2011). “Neural resource depletion” factors, including low socioeconomic
status and personality traits such as neuroticism, exert long-term negative effects.
Both neural resource enrichment and depletion factors can exert effects directly
through brain structure or function as well as indirectly, through increasing capa-
city for scaffolding, as shown in Figure 1.2. The model further delineates potential

A Life Course Model of the Scaffolding Theory of Aging and Cognition (STAC-R)

Biological
Aging

Brain
Structure

Brain
Function

Neural
Resource
Depletion

Life
Course

Experience

Neural
Resource

Enrichment

Intervention

Compensatory
Scaffolding

Level of 
Cognitive
Function

Rate of
Cognitive
Change

•   Intellectual Engagement
•   Education
•   Fitness
•   Multilingualism
•   Higher Ability

•   Amyloid/Tau Burden
•   Dopaminergic Activity
•   Cortical Thickness
•   Brain Volume
•   White Matter Intergrity

•   New Learning
•   Social/Intellectual Engagement
•   Exercise
•   Cognitive Training
•   Meditation

•   Bilateral Recruitment
•   Enhanced Fronto-Parietal 
    Recruitment
•   Strengthened Connectivity
•   Recruitment of New Regions
•   Neurogenesis

•   Neural Specificity
•   MTL Activity
•   Network Connectivity
•   Default Network Modulation

•   APOE
•   Stress
•   Vascular Disease
•   Low SES
•   Depression
•   Neuroticism
•   Head Trauma
•   Toxin Exposure

Figure 1.2 The scaffolding theory of aging and cognition (STAC) – revised.
Figure reprinted from Reuter-Lorenz & Park (2014).
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interventions, such as new learning, training, and meditation, from other factors
that may lead to individual differences as a result of genetic differences, early life
experiences, or long-term exposure (see Figure 1.2).
Despite the potential for scaffolded networks to support cognition, there are

some limitations. The development of skills and learning reflected in faster, more
accurate performance is accompanied by neural networks that are pruned and
honed to be more specialized. Performance relying on scaffolds will be less
efficient than when relying on the original networks that are sculpted and specia-
lized for that purpose. In addition, neurobiological changes with age will, over
time, limit the flexibility that is available in networks. As aging progresses, the
ability to plastically reorganize and recruit additional networks may not be able to
keep up with the need for compensatory scaffolding, resulting in greater expression
of age-related losses in cognition. Pathology, such as through Alzheimer’s disease,
eventually accumulates to the point at which the scaffolds collapse and fail to
support performance.
Individual difference factors impact the need for compensatory scaffolds as well

as the availability of them. Health conditions (e.g., Chapter 32), advanced age, or
genetic factors (e.g., such as possessing two copies of the APOE4 allele; see
Chapter 30) can have adverse effects on compensatory scaffolds. Compensatory
scaffolds also can be enhanced, as depicted in Figure 1.2, through factors such as
engaged lifestyles, including new learning and experiences (Chapter 37), physical
activity (Chapter 35), and cognitive training (Chapter 36).
STAC makes several predictions that could be tested. For one, scaffolding

should reflect the degree of neural insults such that more neural challenges (e.g.,
reduced integrity of white matter; cortical thinning) would be associated with more
use of scaffolding. However, this relationship may only occur up to the point at
which scaffolds can no longer support additional cognitive performance.
Scaffolding should also emerge systematically in regions that have a role in the
task or are engaged by young adults at high levels of task difficulty, rather than by
randomly recruiting regions. However, the site of scaffolding might be more
variable with age than the site of the primary regions engaged by tasks, reflecting
what regions are most healthy in an individual. Furthermore, although compensa-
tory recruitment is beneficial to older adults, recruiting scaffolds in younger adults
may predict poorer performance and the risk of aging at a faster rate. Finally,
scaffolds are flexible, and can be altered through training, though this can be an
effortful way to create scaffolds.
Although evidence has accumulated in support of some of these predictions,

others are harder to test. For example, what degree of neural insult should elicit the
creation of scaffolds? At what point can scaffolds no longer support cognition?
How does one measure the effort needed to create scaffolds through training?
These types of questions require a precision of measurement that is not currently
available, including extensive measurement of change within an individual, parti-
cularly given the potential for variability across individuals. Reuter-Lorenz and
Park (2014) also note the difficulty in identifying the mechanisms that support the
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benefits of training on creating new scaffolds, and the importance of identifying
when certain types of interventions or life experiences would exert their strongest
effect on late-life cognition (e.g., are the cognitive benefits of engaging in physical
exercise the same across young, middle, and late life?). In addition, they suggest the
importance of being able to predict the neural patterns that predict brain health, and
how compensatory scaffolds would be anticipated to support performance in
individuals exhibiting different markers of brain health.
Despite the impressive breadth of scope of STAC-r, future research is positioned

to add even more socioemotional factors to consider. Although the model incorpo-
rates some factors such as depression and social engagement, there are many
others, particularly socioemotional ones, for which we are only beginning to
understand their effects on cognition and brain function (e.g., Gutchess, 2014).
For example, social networks (Chapter 19), future time perspective (Chapter 14), or
other motivational factors (Chapter 18) have been suggested to impact cognitive
performance, and emotion regulation may play a large role in well-being and the
ability to process information in emotionally challenging settings (Chapter 16).
How do these factors influence the recruitment and deployment of compensatory
scaffolds? Is the need for scaffolds the same for strictly cognitive tasks (e.g.,
memory) as well as those tasks completed in a socioemotional contexts (e.g.,
collaborative cognition, Chapter 15; emotion recognition, Chapter 20), or concern-
ing information relevant to goals? Does being under stereotype threat (Chapter 22)
impact one’s ability to rely on compensatory scaffolds? Integrating
a socioemotional perspective may further enrich the understanding of the life
course processes that support and stifle the development and use of compensatory
scaffolds.

Ongoing Debates and Future Directions

Domain-General versus Domain-Specific Age-Related Changes

The extent to which different abilities and cognitive processes reflect the effects of
aging on separate underlying processes or a smaller number of interrelated pro-
cesses continues to be debated. This question raises, for example, whether impair-
ments in memory result from effects of aging on a distinct memory system, or
whether other general factors, such as reduced speed of processing or impaired
inhibition, also account for disruptions to memory. In neural terms, do the effects of
aging lead to widespread changes that extend across brain regions or does aging
differentially affect distinct systems (e.g., the frontoparietal attention network;
default mode network), such that systems can be affected by aging at different
rates or to different degrees?
To further probe the extent to which effects of aging are domain-general versus

domain-specific, one large-scale study investigated over 1,200 adults who com-
pleted twelve cognitive measures in a longitudinal study (Tucker-Drob, 2011).
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Results suggested that there was a large contribution from global factors, with
39 percent of individual differences (see Chapters 4, 30), on average, accounted for
by this domain-general factor. This finding converged with earlier work (e.g.,
Salthouse, 1994) that also suggested that there were only a few independent factors
that accounted for age-related changes in cognition. Domain-specific abilities, such
as episodic memory, speed of processing, and abstract reasoning, also contributed,
with estimates of 33 percent on average. Specific tasks accounted for the final
proportion. These different levels of factors, from global, to domain-specific, to
task-specific, are depicted in Figure 1.3, along with the factor loadings. A more
recent meta-analysis (Tucker-Drob, Brandmaier, & Lindenberger, 2019) further
supports the idea that domain-general factors play a large role in cognitive aging.
Moreover, results suggest that the role may be even larger than indicated in
previous work, accounting for potentially 60 percent of individual differences.
Domain-general effects emerged not only for older adults but across the adult life
span (Tucker-Drob, 2011), though the magnitude of the effects does tend to be
larger for older than younger or middle-aged adults (Tucker-Drob et al., 2019).
Despite the strong evidence for a global factor that contributes greatly to

cognitive aging, there is yet to be strong support for what that factor is. As
discussed by Kiely and Anstey (2015), despite suggestions for various mechan-
isms, including dopaminergic function (see Chapter 5), inflammation, or “brain
aging,” few of these mechanisms have been directly measured in these studies.
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Figure 1.3 Global and domain-specific changes in cognition throughout adulthood.
Depiction of the factor solution that best accounts for changes in individuals’ performance
on cognitive tasks over time. The top level displays the global factor, with domain-specific
ones in the middle, and task-specific ones in the bottom row. Figure adapted from Tucker-
Drob (2011).
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Thus, stronger tests are needed, particularly including measures of putative
mechanisms as well as longitudinal data from life-span samples.

Limitations of Models and Methodological Advances

One challenge for all models of cognitive aging is the difficulty in establishing the
underlying mechanisms that are impacted by aging. For example, speed of proces-
sing has been suggested to reflect the integrity of the myelination of the neurons, as
myelin contributes to the speed of neural transmission (Chevalier et al., 2015;
Salthouse, 2000). Yet isolating even this mechanism is difficult. For one, multiple
abilities seem to be inherently linked, in line with domain-general models of aging
(see the section “Domain-General versus Domain-Specific Age-Related
Changes”). Older adults who have more deterioration of myelin likely have other
pronounced changes to the brain (e.g., cortical thinning). Does decline in one
system lead to decline in another system, or do the systems independently exhibit
age-related change? Given how much research proceeds in parallel, with different
investigators focusing on different levels of analysis (e.g., changes to behavior;
changes at the level of the neural system, such as failure to suppress the default
mode network; changes to neurotransmitters; changes to the structure of a neuron,
such as the number of synapses), it is difficult to gain an appreciation for the
complex interactions across these mechanisms. Critically, it is not possible to
manipulate the amount of myelin in an experimental way in humans; animal
models are limited in the types of complex cognitive tasks they can accomplish.
Similarly, the largely descriptive nature of the models is a challenge. Particularly

for the brain-based models of aging, it is difficult to determine the role of increased,
or decreased, neural activity with age without knowing the trajectory of the
responsiveness of the region or the associations with behavior over time. It could
be the case that increases in neural activity initially reflect compensation and that
the additional activity initially contributes to improved cognitive performance
compared to had the region not been engaged. Or it could be the case that additional
activation reflects an unsuccessful attempt at compensation that is not associated
with enhanced behavioral performance (e.g., Cabeza and Dennis, 2012). Moreover,
the same level of neural activity could mean different things across different
individuals, based on the initial level of cognitive ability, the amount of cognitive
or brain reserve (see Chapter 2), and the point at which the individual is located
along the trajectory of cognitive aging.
Cognitive neuroscience methods that allow some manipulation of neural activity

in an experimental fashion are important for further understanding the effects of
aging. Noninvasive methods such as repetitive transcranial magnetic stimulation
(rTMS) or transcranial direct current stimulation (tDCS) can enhance or suppress
neural activity in a region, allowing for an experimental test of whether a region
contributes to task performance. An early rTMS study tested the role of bilateral
recruitment in older adults, finding that inhibiting either hemisphere of the prefrontal
cortex impaired older adults’ performance (Rossi et al., 2004). This finding was in
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contrast to the lateralized deficits in young adults; inhibiting only the hemisphere that
was critical for younger adults impaired their performance. Thus far, the literature on
neurostimulation is mixed. When benefits to task performance do emerge for older
adults, they are generally modest. One meta-analysis, consisting largely of tDCS
studies, found support for the benefits of neurostimulation for older adults, particu-
larly when administered over multiple sessions (Hsu et al., 2015). More research is
needed to better understand for what tasks and under which circumstances or
methods of administration older adults can benefit from neurostimulation.
Despite the prevalence of fMRI research, the vast majority of work examining the

neural basis for cognition in aging has focused on the use of univariate analyses to
characterize age differences. Noted above, this metric has several limitations that
preclude one’s ability to form widespread conclusions regarding the brain-behavior
relationships in aging, absent such information as behavior, biological factors,
cognitive history, etc. The recent emergence of multivariate methods including
MVPA and representational similarity analyses offers promising avenues for future
characterization of age-related neural function. For example, MVPA analyses have
been used to show age-related reductions in the fidelity of memory representations
in visual regions leading to memory impairments (Bowman et al., 2019; Koen,
Hauck, & Rugg, 2019). The benefit of these multivariate approaches to examining
neural function lies in the fact that they enable a more mechanistic investigation of
neural representations, neural fidelity, and processes that underlie age differences in
cognition. Combined with approaches such as network analyses (e.g., Monge et al.,
2018) they have the potential to elucidate not just age differences in how cognitive
networks represent information, but the fidelity of whole-brain functional networks.

Conclusions

Despite the evidence for decline and losses with age, the growth in the use
of neuroscience techniques that integrate brain and behavior has resulted in appre-
ciation of additional processes that change with age. As a result of these methods,
there also is increased appreciation of the flexibility with which the brain responds
to the challenges posed by aging. Much work remains to be done to understand
which types of experiences are protective and how these processes can be har-
nessed to extend the “health span” of the aging brain. The expanding research
landscape, including longitudinal studies that incorporate neural measures, the
wealth of interest in investigating interventions, and methodological advances,
will result in additional rich insights into cognitive aging.
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